Researchers from Aussie university discover new way to improve performance of nanolasers
Xinhua, July 4, 2016 Adjust font size:
By adding atoms of zinc to nanolasers, an Australian researcher managed to improve the amount of light from the lasers by 100 times, the Australian National University (ANU) said on Monday.
Researcher Tim Burgess from the ANU Research School of Physics and Engineering have improved the performance of tiny lasers by adding impurities of zinc.
This is a discovery which will be central to the development of low-cost biomedical sensors, quantum computing and a faster internet, according to the ANU.
Burgess added atoms of zinc to lasers one hundredth the diameter of a human hair and made of gallium arsenide -- a material used extensively in smartphones and other electronic devices.
The impurities led to a 100 times improvement in the amount of light from the lasers.
"Normally you wouldn't even bother looking for light from nanocrystals of gallium arsenide -- we were initially adding zinc simply to improve the electrical conductivity,"said Burgess, a PhD student.
"It was only when I happened to check for light emission that I realised we were onto something."
Gallium arsenide is a common material used in photovoltaic cells, lasers and light-emitting diodes (LEDs), but is challenging to work with at the nanoscale as the material requires a surface coating before it will produce light.
Previous ANU studies have shown how to fabricate suitable coatings.
The new result complements these successes by increasing the amount of light generated inside the nanostructure, said research group leader Professor Chennupati Jagadish, from the ANU Research School of Physics Sciences.
"It is an exciting discovery and opens up opportunities to study other nanostructures with enhanced light emission efficiency so that we can shrink the size of the lasers further,"he said.
Burgess said that the addition of the impurity to gallium arsenide, a process called doping, did not only improve the light emission.
"The doped gallium arsenide has a very short carrier lifetime of only a few picoseconds, which meant it would be well suited to use in high speed electronics components,"he said.
"The doping has really given these nanolasers a performance edge." Endit